Quantifying the Carbon Footprint of AI: Challenges and Opportunities in Sustainable Machine Learning

Cole Dumas¹, Iraklis Anagnostopoulos, PhD² ¹SI Bridges to the Baccalaureate, School of Biological Sciences, Southern Illinois University Carbondale ²Embedded Systems Software Lab, Southern Illinois University Carbondale.

Introduction

Estimated Energy Consumption

Methodology

LLM Carbon Overview

FastAPI - Swagger UI

https://arxiv.org/abs/2011.02839 https://arxiv.org/abs/2309.14393

I would like to thank the SI Bridges program, as well as Dr. Iraklis Anagnostopoulos and Andreas Karatzas for helping me with my project. I also would like to thank NIH for funding my research. Lastly, I would like to thank SIU Carbondale School of Electrical, Computer, and Biomedical engineering.

OUTHERN ILLINOIS UNIVE

SI BRIDGES TO

THE BACCALAU

Table 1: The comparison of LLMCarbon against prior work.

scheme	predictive modeling	MoE support	architectural parameters	specialized hardware	operationa carbon
mlco2 others LLMCarbon	✓ × ✓	× × ✓	× × ✓	× × ✓	×

Current Focus

	S FastAPI - Swagger UI x +
í	← → C (i) localhost:5000/docs#/terminal/desktop_impact_v1_terminal_desktop_get
	Archetype Allocation
	Parameters
	Name Description
	archetype string (query) verbose boolean (query) true ~
	duration number (query)
	criteria array(string) (query) adp - pe - Add string item
	Execute
	Responses
	Code Description
	200 Successful Response
	Media type application/json Controls Accept header. Example Value Schema
	🦢 Menu 🚃 💆 🖢 Terminal 🛛 [Terminal] 🧔 FastAPI - Swagger U
Terminal	

tatus":"ARCHETYPE","unit":"W","min":100.0,"max":450.0},"usage location":{"value":"EEE","status":"DEFAULT","unit":"CodSP3 - NCS Country Codes - NATO"} value":52560.0,"status":"ARCHETYPE","unit":"hours","min":52560.0,"max":52560.0},"gwp factor":{"value":0.38,"status":"DEFAULT","unit":"kg 'S0306261921012149","min":0.023,"max":1.13161},"adp factor":{"value":6.42317e-08,"status":"DEFAULT","unit":"kg Sbeg/kWh","source":"ADEME Base IMPACTS ®","min":1.324e-08,"max":2.65575e-07},"pe facto alue":12.873,"status":"DEFAULT","unit":"MJ/kWh","source":"ADPf / (1-%renewable energy)","min":0.013,"max":468.15},"units":{"value":1,"status":"ARCHETYPE","min":1,"max":1},"type":{"value":"pro",'

088e-05,"max":0.001884},"unit":"kqSbeq","description":"Use of minerals and fossil ressources"},"pe":{"embedded":"not implemented","use":{

References

Gupta, U., Kim, Y. G., Lee, S., Tse, J., Lee, H.-H. S., Wei, G.-Y., Brooks, D., & Wu, C.-J. (2020, October 28). Chasing carbon: The elusive environmental footprint of computing. arXiv.org.

Results should be interpreted with caution (see min and max values)"]},"unit":"MJ","description":"Consumption of primary energy

Faiz, A., Kaneda, S., Wang, R., Osi, R., Sharma, P., Chen, F., & Jiang, L. (2024, January 19). Llmcarbon: Modeling the end-to-end carbon footprint of large language models. arXiv.org.

Acknowledgments

SIT'	Y		
IR	F	١т	F